heeft dit iets te maken met de beweging van een geladen deeltje in een (homogeen) magnetisch veld? Zo ja, moet die U onder de wortel dan geen v (snelheid) zijn? Vertel eens iets meer over de context van deze afleiding? Voor welke situatie / gebeurtenis zou deze formule moeten gelden?
groet, Jan
Hans
op
18 maart 2021 om 16:32
Het is de formule van een halve cirkelbaan, maar het hoort bij elektromagnetisme.
Theo de Klerk
op
18 maart 2021 om 17:04
mv2/r = FL = Bqv Eelek = qU= 1/2 mv2 en daarmee stoeien (v2 substitueren in de ander)
Theo de Klerk
op
19 maart 2021 om 22:48
ik heb het maar eens nagerekend :
Versnelling: qU = 1/2mv2 dus v = √ (2qU/m) Met die snelheid komt het geladen deeltje het magneetveld in en komt in een cirkelbaan onder invloed van Lorentzkracht. De algemene regel voor centripetale kracht en de levering door de Lorentzkracht (Bqv) levert dan: mv2/r = Bqv ofwel mv/r = Bq of r = mv/(Bq) De bekende v invullen: r = ( m √ (2qU/m) ) /(Bq) = √ (2qmU)/(Bq) = √ (2qmU/(B2 q2)) = √ (2mU/(B2q) )
Dimensioneel klopt het ook voor straal r (dimensie [L] lengte) (neem hierbij J = Nm want E = F.s , T = N/C ms-1 want B = F/(qv) )
[L] = m = √ (kg Nm/C) /((N2/(C m s-1 )2 C) = √ (kg m C-1 N-1 C2 s-2 m2 C-1 ) = √ (kg m C-1 kg-1 m-1 s2 C2 s-2 m2 C-1) = √ ( m2 ) = m