watermolen (energie)

sjoerd stelde deze vraag op 15 februari 2007 om 11:38.

we vragen ons het volgende af: We hebben een waterrad die een energie nodig heeft van 98110Joule om rond gedraaid te worden. De schoep die water opvangt heeft een oppervlakte van 0.75 vierkante meter. De snelheid van het water is 2.1m/s. Nu is onze vraag hoe we uit kunnen rekenen of de rivier genoeg kracht en energie levert om het rad rond te laten draaien 

Reacties

Bas op 17 februari 2007 om 16:15

Hoi Sjoerd,

Wat bedoel je met 'een energie van 98 kJ om rond gedraaid te worden'? Is dat 1 rotatie? Is dat de energie die het rad per seconde op moet gaan leveren?

Misschien dat je uit kunt rekenen wat de kinetische energie is van het langsstromende water. De doorsnede is 0,75 vierkante meter, en je weet hoeveel water er per seconde langsstroomt. Met E=0.5*m*v^2 kan je de energie in joule bepalen.

Succes en groeten!

Bas 

Rene op 08 oktober 2007 om 16:26
De werkelijkheid wel wat gecompliceerder dan Bas aangeeft. Aan de randen van elke stroom, is de stroomsnelheid namelijk nul, terwijl het water in het midden extra snel stroomt. Omdat de formule voor de kinetische energie de snelheid in het kwadraat bevat, mag je voor de stroomsnelheid niet zomaar het gemiddelde nemen op basis van een debiet en de doorsnede van de stroom. Hiermee krijg je een onderschatting van de energie. Zonder dit effect zou een watermolen in een horizontale goot nooit gaan draaien. Immers, het debiet is aan beide zijden van de molen gelijk, net als de doorsnede van de goot. Op basis van de formule van Bas is de energie van het water aan beide zijden van de molen gelijk zodat de molen geen energie kan onttrekken. In werkelijkheid zal de molen echter het stroomprofiel vereffenen waardoor er toch energie kan worden onttrokken aan het water.Rene
Dit topic is gesloten voor verdere reacties.