Deeltjes uit een supernova (relativiteit)

Onderwerp: Relativiteitstheorie (vwo)

Gebruik de speciale relativiteitstheorie altijd als je heel hard gaat.

Deze opgave is afkomstig uit het hoofdstuk Relativiteit van de methode Systematische Natuurkunde vwo 6 (8e editie) van uitgeverij ThiemeMeulenhoff bv.

Een heliumkern krijgt tijdens een supernova een totale energie van 3,5 nJ.

Vraag a. Toon aan dat de rustenergie van een heliumkern gelijk is aan 6,0·10−10 J

De rustenergie bereken je met de bekendste formule van Einstein:

E=mc2

In BINAS tabel 25A vind je: m = 4,0026 u

E=4,00261,66051027(2,9979108)2=6,0081010 J6,01010 J

Vraag b. Toon aan dat je de snelheid van de heliumkern moet berekenen met relativistische mechanica. 

Je moet met relativistische mechanica rekenen als de kinetische energie in de buurt komt van de rustenergie.

De kinetische energie is het verschil tussen de totale energie en rustenergie:

Ek=EtotErust=(356)1010=2,9109 J

De kinetische energie is zelfs groter dan de rustenergie, dus je moet relativistische mechanica gebruiken.

Vraag c. Bereken de snelheid van de heliumkern.

Om de snelheid te bepalen, hebben we de gammafactor nodig. Deze kunnen we bepalen met de volgende formule:

Etot=γmc2

Verder weten we:

Etot=3,5109 Jmc2=6,01010 J

Hieruit volgt:

γ=3,51096,01010=5,833

Oftewel:

5,833=11v2c21v2c2=(15,833)2

v2c2=115,8332v=c115,8332

En dus:

v=0,985c0,99c