Icon up Overzicht

Slinger van Huygens (HAVO pilotexamen, 2013-1, opg 5)

Onderwerp: Trilling en golf

Examenopgave HAVO pilot, natuurkunde, 2013 tijdvak 1, opgave 5: Slinger van Huygens

Lees eerst onderstaande tekst.

Al in de zeventiende eeuw hebben de natuurkundigen Galileo Galilei en Christiaan Huygens de slingerbeweging bestudeerd. Galilei schreef:
``Elke slinger heeft zijn eigen, door de natuur gegeven slingertijd. Deze hangt niet af van het gewicht dat er aan hangt of van de beginhoek. De slingertijd hangt alleen af van de lengte van de slinger.''
Huygens was het er mee eens dat de slingertijd afhangt van de lengte van de slinger en niet van het gewicht dat er aan hangt. Maar volgens hem kan de beginhoek van de slinger wel degelijk van invloed zijn op de slingertijd, met name bij grote beginhoeken. Zie figuur 1

figuur 1.

Hiske wil de beweringen van Galilei en Huygens controleren. Ze gebruikt de opstelling die in figuur 2 schematisch is weergegeven.

figuur 2.

Steeds als het blokje de evenwichtsstand passeert, wordt de smalle lichtbundel die op de sensor valt even onderbroken. De lichtsensor is aangesloten op een computer die de sensorspanning meet als functie van de tijd.
In figuur 3 staat de eerste meting van Hiske. Daarin heeft ze de slinger met een kleine beginhoek losgelaten.

figuur 3.

Let op: deze opgave komt uit een pilot examen. Inmiddels kan de examenstof gewijzigd zijn. Controleer altijd zelf of alle onderdelen uit de opgave nog tot de huidige examenstof behoren.

Opgaven

a) Bepaal de lengte van de slinger met behulp van figuur 3.

Om te controleren of de massa die aan de slinger hangt inderdaad geen invloed heeft op de slingertijd, hangt Hiske een tweede blokje aan het koord. Zij kan dat blokje onder of naast het eerste blokje hangen.

b) Welke manier is het beste? Licht je antwoord toe.

Om te onderzoeken of de beginhoek van invloed is op de slingertijd T laat Hiske de slinger bij een steeds grotere beginhoek los. Bij elke beginhoek wil ze met de computer zo nauwkeurig mogelijk de slingertijd bepalen.
Ze overweegt de volgende twee methodes.
a. Bij elke beginhoek alleen de tijd meten van de eerste slingering, dit vijf keer herhalen en het gemiddelde van die metingen berekenen.
b. Bij elke beginhoek de tijd meten van de eerste vijf slingeringen en deze tijd delen door vijf.

c) Welke methode is voor dit onderzoek het beste? Licht je antwoord toe.

Haar metingen zijn verwerkt in de grafiek van figuur 4.

figuur 4.

d) Leg uit tot welke beginhoek de uitspraak van Galilei klopt.

Uit figuur 4 blijkt dat de slingertijd toeneemt als de beginhoek groter wordt. Huygens bedacht een methode om dit effect te compenseren. Bij het ophangpunt bracht hij twee speciaal gevormde boogjes aan. Zie figuur 5.

figuur 5.

Bij een grote hoek maakt de slinger contact met de boogjes. Daardoor verandert de slingerlengte.

e) Leg uit hoe de invloed van de beginhoek op de slingertijd op deze manier wordt gecompenseerd.

Uitwerkingen

Open het antwoord op de vraag van jouw keuze.